cost. Factor all of this in when you do your research on these five types of

connections, and choose the one that is best for you.

CHAPTER -4

File

File is nothing but an Electronic document. The contents can be ordinary Text or it
can be an executable program. Each file is given a file name to identify it. The File

name is in the form
File Name . Extension

Filename can consist of Alphabets or combinations of alphabets, numerals and

special characters. Extension indicates the type of file.
Example : XY.Doc

Here File name is XY

Extension name is .DOC which indicates Document file.
Folder

Folder contains a group of files. Folder is otherwise called as directory. Folder may
have a set of files under it. It may have other folders under it also. This files and

folders can be arranged in hierarchical manner or a tree like structure.

File organization

The arrangement of records in a file is known as File Organisation. File Organisation
deals with the arrangement of data items in the secondary storage devices like
magnetic disk. That is, the file organisation deals with how the logical tuples (rows)

of tables (relations) are organised on the physical storage medium.

For organising records efficiently in the form of a computer file, following three things

are important:

(a) A logical method should be selected to organise records in a file.

DTE&T, Odisha Page 62

(b) File structure should be so designed that it would allow quick access to

needed data items.

(c) Means of adding or deleting data items or records from files must be present.

Depending on the above considerations, a file may be organised as:

(a) Sequential file

(b) Direct or random access file

(c) Indexed-sequential file

Sequential file

A sequential file is a file in which the records are stored in some order, say the

student file contains records of students in the ascending order of roll number of

students. It is not necessary that all the records of a sequential file should be in

physical adjacent positions. On a magnetic tape, the records are written one after the

other along the length of the tape. In case of magnetic disks, the records of a

sequential file may not be in contiguous locations. The sequential order may be

given with the help of pointers on each record.

Sequential files are preferable when they are to be stored on sequential access

devices such as Magnetic tapes.

DTE&T, Odisha

1001 | 1002 | 1003 | 1004 | 1005 | 1006

Rec.1 | Rec.2 | Rec.3 | Rec.4 | Rec.5 | Rec.6
A sequential file on tape

1001 | 1002 1003 | 1004

Rec.1 | Rec.2 Rec.3 | Rec.4

1015 | 1017

Rec.1 | Rec.2

Page 63

A sequential file on disk

The main advantages of sequential file organisation are:
(a) File design is simple.
(b) Location or records requires only the record key.

(c) When the activity rate is high, simplicity of the accessing method makes
processing efficient.

(d) Low-cost file media such as magnetic tapes can be used for storing data.
The main drawbacks of sequential file organisation are.

(a) Updating requires that all transaction records are sorted in the record key

sequence.

(b) A new master file, physically separate and exclusive, is always created as a
result of sequential updating.

(c) Addition and deletion of records is not simple.

Direct Access File.

A sequential file is not suitable for on-line enquiry. Suppose a customer at a bank
wishes to know the balance amount in his savings account. If the customer file Ls
organised sequentially, the record of this customer has to be obtained by searching
sequentially from the beginning. There is no way of picking out the particular record
wit’hout traversing the file from the beginning and this mpy take a long time. Hence,
in such situations, random access or direct access file organisation provides a

means of accessing records speedily.

In random access or direct access method of file organisation, each record has its
own address on the file. With the help of this physical address, the record can be
directly accessed for reading or writing. The records need not be in any sequence
within the file and also need not be in adjacent locations on the storage medium.

Such a file cannot be created on a magnetic tape medium. Random (or direct) files

DTE&T, Odisha Page 64

are created only on magnetic disks. Since every record can be independently

accessed, every transaction can be manipulated individually.

Random access file organisation is best suited for on-line processing systems where

current information is the one that is always required.

The advantages of Direct Access file organisation are:

(a) Immediate access to records is possible.

(b) Up-to-date information will always be available on the file.

(c) Several files can be simultaneously updated.

(d) Addition and deletion or records is not very complex.

(e) No new master file is created for updating a random access file.
The disadvantages of Direct Access file organisation are:

(a) Less efficient in the use of storage space.

(b) Uses a relatively expensive medium.

(c) Not well suited for batch processing.

(d) Data security is less due to direct access facility.

Indexed Sequential File

Some files may be required to support both batch processing and on-line processing.
For example, an inventory or stock file may be updated periodically by batch
processing and at the same time may have to provide current information about
stock availability on-line. They can be thus, organised as indexed sequential files.
Indexed Sequential file combines the advantages of sequential and direct access file

organisations.

An indexed sequential file is basically a sequential file organised serially on key
fields. In addition, an index is maintained which speedsup the access of isolated

records. Just as you may se indexes to locate information in book, similarly an index

DTE&T, Odisha Page 65

is provided for the file. The file is divided into a number of blocks and the highest key

in each block is indexed.

Key Starting address of the
block

125 12

860 19

1420 24

1600 42

1829 49

2225 159

2890 165

3200 807

Indexed sequential files are also known as Indexed Sequential Access Method
(ISAM) files.

Within each block, the record is searched sequentially. This method is much faster
than searching the entire file sequentially. It is also possible to have more than one

level of indexing to make the search process faster.

The main advantage of indexed sequential file organisation is that it is suitable for

both sequential and on-line or direct access processing.
The main disadvantages of this organisation are:
(a) Less efficient in the use of storage space.

(b) Additions and deletions of records are more complex as they effect both the

index and the record number in the file.

DTE&T, Odisha Page 66

Deciding on a File Organisation

The major factors to be considered while deciding which file organisation should be

chosen are the following:

(a) Percentage of actual records processed in a day. If large number of records
are accessed at a time, direct access file organisation should be used. If very
few records are accessed, sequential file organisation will be more suitable

and cheaper.

(b) Files that are frequently updated must be stored on a direct access storage

device, such as disk.

(c) Selection of file organisation also depend on the mode of processing i.e.

where the system requires an online processing or batch processing.

DATA PROCESSING

Data Processing means, processing the input data to produce some meaningful and
purposeful information. Computer has the capability of processing high-volume of
data in less time with higher accuracy. Hence the data processing performed by
computer is sometimes called Electronic Data Processing (EDP). Data processing

involves 5 distinct steps.
- Data capturing
- Data validation

Processing / Execution

- Data storage

Data Retrieval/Out generation

Data capturing encompasses the activities of inputing data to the computer. Before
giving input to the system the required data are to be first identified and put in the
defined format called source data layout. The aim of this layout is to have faster data

entry. To reduce the volume of data and also have better organisation and easy

DTE&T, Odisha Page 67

access to data those can suitably be coded. After data are ready they can be
entered to the computer through keyboard. This is sometimes called data capture
through intelligent terminal. The other form of data capture is through scanners or
optical devices. In this type of data capturing data are not entered rather data are
captured from the source document or paper as it is Photographs, fingerprints,
signatures, objective multiple type answers in answer papers etc. are captured
through this method. Another form of data capturing is through some interfacing
devices from where data can be transferred directly to the computer. Example of this

is Electronic cash Registers used in shops and cash counters.

After data capturing, the data is validated. Data validation involves checking of input
data to fit to requirements or specifications. For example price of a book can be
numeric only. If by mistake Alphabetic data are entered then it is checked and error
is shown to revalidate the data. This prevents unwanted and unspecified data to

enter into the system and causing errors.

The valid input data are stored in file or database and processed as per the
instructions. The instructions are put in programs or software. This software or
program, when executed does the processing of input data and produces the output.

Again outputs are stored in files in memory.

After processing of data, the outputs are produced. The outputs may be formed in
different ways depending on the requirements and specifications. The same set of
data can be printed in tabular form or in form of graphs. There are variety of ways for
presenting data. The printed output is sometimes called hardcopy. There can be
provision of answering to queries of user where the answer is displayed on the
monitor screen itself. So it depends on the requirements of user.

An important step of Data Processing is maintaining Database. Database is nothing
but collection of data which is controlled centrally with many provisions of data
security. This is where, normally data are stored for reference. The input data and
output data are stored in database. Even after processing of data and producing of
data is over, database is maintained properly with safety for future needs and
reference. The important tool of data processing is file. File is nothing but an
electronic document where data can be stored. Depending on the type of file

structure and organisation the data access speed varies.

DTE&T, Odisha Page 68

CHAPTER -5

Algorithm & Flowchart

Algorithm is defined as the step by step solution of problem in user’s language.

It is considered as an effective procedure for solving a problem in finite number of
steps. The characteristics of Algorithm are

e Precise

e Unambiguous

¢ Finite termination
e Unique solution

Once algorithm is written, it can be coded into a program using any programming

language. Algorithm uses 3 different constructs
e Sequence
e Branching or Decision making
o Repetition

Sequence says that instructions are to be executed in what order or sequence.
Branching involves testing of condition and based on the outcome of the condition
testing different instructions are executed. Repetition means one or more instructions
shall be repeated for a number of times. This is otherwise called as loop. There are

different types of loops such as
While- do , do-while , for
Example:
1. Algorithm to find out sum of two numbers to be taken as input.
Step-1 Read the 1% number x
Step-2 Read the 2" number y

Step-3 Sum=x+y

DTE&T, Odisha Page 69

Step-4 Print Sum

This is an example where only sequence is exhibited

2. Algorithm to find out larger between numbers to be taken as input.

Step-1 Read the 1% number x
Step-2 Read the 2" number y
Step-3 If x>y
Then Print x
Else if x<y
Then Printy

Else Print “ Both are Equal “

This is an example where Branching is exhibited

3. Algorithm to find out sum of first 10 natural numbers.

Step-1 i=1, Sum=0

Step-2 Repeat step 3 and 4 while i<>10

Step-3 Sum= Sum+i

Step-4 i=i+1

Step-5 Print Sum

DTE&T, Odisha Page 70

This is an example where Repetition is exhibited

Flowchart is a graphical or symbolic representation of the process of solution to a
problem or algorithm. It helps to visualize the complex logic of the solution of the
problem in a simplified manner through diagrammatic representation. Each step of
the algorithm is presented using a symbol and a short description. The different

symbols used for the flowchart are

Start or Stop

E Input or Output

Process

Decision Symbol

l T Arrow for sequence
O Connector
Example

1. Flowchart to find out sum of two numbers to be taken as input

start

DTE&T, Odisha Page 71

2. Flowchart to find out larger between two numbers to be taken as input

start

A 4

Read x,y
No

Print Both Equal

&
<«

3. Flowchart to find out sum of first 10 natural numbers

i=1, Sum=0

&

N 1

Sum= Sum +i

i=i+1

Print sum

A 4

Stop

DTE&T, Odisha Page 72

Pseuodocode

It is a concise description algorithm in English language that uses programming
language constructs. It contains outlines of the program that can be easily converted
to program. It focuses on the logic of the algorithm without giving stress on the
syntax of programming language. This is meant for understanding the logic of the
program easily. Flowchart can be considered as an alternative to pseudocode.
Several constructs/key words of programming language can be used in the algorithm

to write the pseudocode. Some of them are
If ... Endif

Do while ... enddo

While ... endwhile

Repeat ... until

For ... endfor

Case endcase

Call

Return

Programming Language

Programming language is a tool to express the logic or instructions for understanding
of the computer. Any programming language has two components:

e Syntax
e Semantics

Syntax refers to the rules to be followed for writing valid program statements.

Compiler can detect errors in syntax while compiling the program.

Semantics is associated with logic of the program. Compiler can not detect the

semantic error. The user of programmer can diagnose semantic error.

DTE&T, Odisha Page 73

There are good number of High level languages, each meant for specific area of
data processing. Commonly known languages are BASIC,FORTRAN, COBOL,
Pascal, C, C++ etc. While FORTRAN is good for Numerical and scientific calculation,

COBOL is good for Business applications involving large amount of data handling.
Generations of Programming Language

The Programming languages can be classified into 4 generations

1% Generation: Machine Language

2"? Generation: Assembly Language

3rd Generation: High Level Language

4th Generation: Very High Level Language

Machine Level language contains instructions in binary form i.e. in Os and 1s. Thus
writing instruction was very difficult and needs heavy expertise. This was used in
early days computers.

Assembly level language instructions were written using symbolic codes known as
mnemonics. In comparison to Machine language it is relatively easier to write
program, but still it requires lot of expertise. A translator called assembler is used to
translate assembly language program to machine level language.

High level language contains instructions in English like words so that user will feel
easier to formulate and write the logical statements of the program. Here the logic
may spread over multiple statements as against a single statement in assembly
language. It uses a translator called compiler for translation of High level language
program to machine level language program. There are many High level languages
used for programming such as BASIC, FORTRAN, COBOL, PASCAL, C, C++ etc.

Very High Level language other wise called as 4GL uses nonprocedural logical
statements. A typical example of 4GL is the query language such as SQL.

Structured Programming Language

Structured Programming is also known as Modular Programming. In this type of
programming technique, the program shall be broken into several modules. This

helps in managing memory efficiently as the required module of the program will be

DTE&T, Odisha Page 74

loaded into the memory only and not the entire program. This will also enhance code
reuse. Writing, understanding, debugging and modifying the individual module of the

program is also easier.

CHAPTER -6

The C Language

C is a professional programmer's language. It was designed to get in one's way as
little as possible. Kernighan and Ritchie wrote the original language definition in their
book, The C Programming Language (below), as part of their research at AT&T.
Unix and C++ emerged from the same labs. For several years | used AT&T as my
long distance carrier in appreciation of all that CS research, but hearing "thank you

for using AT&T" for the millionth time has used up that good will.

The C Language

C is a professional programmer's language. It was designed to get in one's way as
little as possible. Kernighan and Ritchie wrote the original language definition in their
book, The C Programming Language (below), as part of their research at AT&T.
Unix and C++ emerged from the same labs. For several years | used AT&T as my
long distance carrier in appreciation of all that CS research, but hearing "thank you

for using AT&T" for the millionth time has used up that good will.

Some languages are forgiving. The programmer needs only a basic sense of how
things work. Errors in the code are flagged by the compile-time or run-time system,
and the programmer can muddle through and eventually fix things up to work
correctly. The C language is not like that.The C programming model is that the
programmer knows exactly what they want to do and how to use the language
constructs to achieve that goal. The language lets the expert programmer express

what they want in the minimum time by staying out of their way. C is "simple" in that

DTE&T, Odisha Page 75

the number of components in the language is small-- If two language features
accomplish more-or-less the same thing, C will include only one. C's syntax is terse
and the language does not restrict what is "allowed" -- the programmer can pretty
much do whatever they want C's type system and error checks exist only at compile-
time. The compiled code runs in a stripped down run-time model with no safety
checks for bad type casts, bad array indices, or bad pointers. There is no garbage
collector to manage memory. Instead the programmer manages heap memory
manually. All this makes C fast but fragile.

Analysis -- Where C Fits

Because of the above features, C is hard for beginners. A feature can work fine in
one context, but crash in another. The programmer needs to understand how the
features work and use them correctly. On the other hand, the number of features is
pretty small. Like most programmers, | have had some moments of real loathing for
the C language. ltcan be irritatingly obedient -- you type something incorrectly, and it
has a way of compiling fine and just doing something you don't expect at run-time.
However, as | have become a more experienced C programmer, | have grown to
appreciate C's straight-to-the point style. | have learned not to fall into its little traps,

and | appreciate its simplicity.

Perhaps the best advice is just to be careful. Don't type things in you don't
understand. Debugging takes too much time. Have a mental picture (or a real
drawing) of how your C code is using memory. That's good advice in any language,
but in C it's critical.

Perl and Java are more "portable" than C (you can run them on different computers
without a recompile). Java and C++ are more structured than C. Structure is useful
for large projects. C works best for small projects where performance is important
and the progammers have the time and skill to make it work in C. In any case, Cis a
very popular and influential language. This is mainly because of C's clean (if
minimal) style, it's lack of annoying or regrettable constructs, and the relative ease of

writing a C compiler.

DTE&T, Odisha Page 76

Other Resources

» The C Programming Language, 2nd ed., by Kernighan and Ritchie. The thin book
which for years was the bible for all C programmers. Written by the original
designers of the language. The explanations are pretty short, so this book is better

as a reference than for beginners.

* http://cslibrary.stanford.edu/102/ Pointers and Memory -- Much more detail about
local memory, pointers, reference parameters, and heap memory than in this article,

and memory is really the hardest part of C and C++.

* http://cslibrary.stanford.edu//103/ Linked List Basics -- Once you understand the

basics of pointers and C, these problems are a good way to get more practice.
Basic Types and Operators

C provides a standard, minimal set of basic data types. Sometimes these are called
“primitive" types. More complex data structures can be built up from these basic

types.
Integer Types

The "integral" types in C form a family of integer types. They all behave like integers
and can be mixed together and used in similar ways. The differences are due to the
different number of bits ("widths") used to implement each type -- the wider types

can store a greater ranges of values.

char ASCII character -- at least 8 bits. Pronounced "car". As a practical matter char
is basically always a byte which is 8 bits which is enough to store a single ASCII
character. 8 bits provides a signed range of -128..127 or an unsigned range is
0..255. char is also required to be the "smallest addressable unit" for the machine --

each byte in memory has its own address.

short Small integer -- at least 16 bits which provides a signed range of -
32768..32767. Typical size is 16 bits. Not used so much.

int Default integer - at least 16 bits, with 32 bits being typical. Defined to be the
"most comfortable" size for the computer. If you do not really care about the range
for an integer variable, declare it int since that is likely to be an appropriate size (16

or 32 bit) which works well for that machine.

DTE&T, Odisha Page 77

Long Large integer -- at least 32 bits. Typical size is 32 bits which gives a signed
range of about -2 billion..+2 billion. Some compilers support "long long" for 64 bit

ints.

The integer types can be preceded by the qualifier unsigned which disallows
representing negative numbers, but doubles the largest positive number
representable. For example, a 16 bit implementation of short can store numbers in
the range -32768..32767, while unsigned short can store 0..65535. You can think of
pointers as being a form of unsigned long on a machine with 4 byte pointers. In my
opinion, it's best to avoid using unsigned unless you really need to. It tends to cause

more misunderstandings and problems than it is worth.
Extra: Portability Problems

Instead of defining the exact sizes of the integer types, C defines lower bounds. This
makes it easier to implement C compilers on a wide range of hardware.
Unfortunately it occasionally leads to bugs where a program runs differently on a 16-
bit-int machine than it runs on a 32-bit-int machine. In particular, if you are designing
a function that will be implemented on several different machines, it is a good idea to
use typedefs to set up types like Int32 for 32 bit int and Int16 for 16 bit int. That way
you can prototype a function Foo(Int32) and be confident that the typedefs for each
machine will be set so that the function really takes exactly a 32 bit int. That way the

code will behave the same on all the different machines.
char Constants

A char constant is written with single quotes (') like 'A’ or 'z'. The char constant ‘A’ is
really just a synonym for the ordinary integer value 65 which is the ASCII value for
uppercase 'A'. There are special case char constants, such as '\t' for tab, for

characters which are not convenient to type on a keyboard.

'A" uppercase 'A' character

\n' newline character

\t' tab character

\0' the "null" character -- integer value 0 (different from the char digit '0")

\012' the character with value 12 in octal, which is decimal 10

DTE&T, Odisha Page 78

int Constants

Numbers in the source code such as 234 default to type int. They may be followed
by an 'L' (upper or lower case) to designate that the constant should be a long such
as 42L. An integer constant can be written with a leading Ox to indicate that it is
expressed in hexadecimal -- 0x10 is way of expressing the number 16. Similarly, a
constant may be written in octal by preceding it with "0" -- 012 is a way of expressing

the number 10.

This page lists C operators in order of precedence (highest to lowest). Their

associativity indicates in what order operators of equal precedence in an expression

are applied.
Operator |Description Associativity
() Parentheses (function call) (see Note 1)|left-to-right
0 Brackets (array subscript)
Member selection via object name
-> Member selection via pointer
++ - Postfix increment/decrement (see Note 2)
++ --|Prefix increment/decrement|right-to-left
+ -|Unary plus/minus
! ~|Logical negation/bitwise complement
(type) Cast (change type)
* Dereference
& Address

sizeof Determine size in bytes

I % Multiplication/division/modulus left-to-right
+ - Addition/subtraction left-to-right
<< >> Bitwise shift left, Bitwise shift right left-to-right
< <=|Relational less than/less than or equal to|left-to-right
> >= Relational greater than/greater than or equal to

DTE&T, Odisha Page 79

== I= Relational is equal to/is not equal to left-to-right
& Bitwise AND left-to-right
A Bitwise exclusive OR left-to-right
| Bitwise inclusive OR left-to-right
&& Logical AND left-to-right
[l Logical OR left-to-right
?: Ternary conditional right-to-left
= Assignment right-to-left
+= -=|Addition/subtraction assignment

*= /=|Multiplication/division assignment

%= &=|Modulus/bitwise AND assignment

A= |=|Bitwise exclusive/inclusive = OR assignment

<<= >>= (Bitwise shift left/right assignment

, Comma (separate expressions) left-to-right

Type Combination and Promotion

The integral types may be mixed together in arithmetic expressions since they are all
basically just integers with variation in their width. For example, char and int can be
combined in arithmetic expressions such as ('b' + 5). How does the compiler deal
with the different widths present in such an expression? In such a case, the compiler
"promotes" the smaller type (char) to be the same size as the larger type (int) before
combining the values. Promotions are determined at compile time based purely on
the types of the values in the expressions. Promotions do not lose information -- they

always convert from a type to compatible, larger type to avoid losing information.

Pitfall -- int Overflow

DTE&T, Odisha Page 80

A piece of code which tried to compute the number of bytes in a buffer with the
expression (k * 1024) where k was an int representing the number of kilobytes
wanted. Unfortunately this was on a machine where int happened to be 16 bits.
Since k and 1024 were both int, there was no promotion. For values of k >= 32, the
product was too big to fit in the 16 bit int resulting in an overflow. The compiler can
do whatever it wants in overflow situations -- typically the high order bits just vanish.
One way to fix the code was to rewrite it as (k * 1024L) -- the long constant forced
the promotion of the int. This was not a fun bug to track down -- the expression sure
looked reasonable in the source code. Only stepping past the key line in the
debugger showed the overflow problem. "Professional Programmer's Language."
This example also demonstrate s the way that C only promotes based on the types
in an expression. The compiler does not consider the values 32 or 1024 to realize
that the operation will overflow (in general, the values don't exist until run time
anyway). The compiler just looks at the compile time types, int and int in this case,
and thinks everything is fine.

Floating point Types

float Single precision floating point number typical size: 32 bits double Double
precision floating point number typical size: 64 bits long double Possibly even bigger
floating point number (somewhat obscure) Constants in the source code such as
3.14 default to type double unless the are suffixed with an 'f' (float) or 'I' (long
double). Single precision equates to about 6 digits of precision and double is about
15 digits of precision. Most C programs use double for their computations. The main
reason to use float is to save memory if many numbers need to be stored. The main
thing to remember about floating point numbers is that they are inexact. For

example, what is the value of the following double expression?
(1.0/3.0 + 1.0/3.0 + 1.0/3.0) // is this equal to 1.0 exactly?

The sum may or may not be 1.0 exactly, and it may vary from one type of machine to
another. For this reason, you should never compare floating numbers to eachother
for equality (==) -- use inequality (<) comparisons instead. Realize that a correct C
program run on different computers may produce slightly different outputs in the

rightmost digits of its floating point computations.

Comments

DTE&T, Odisha Page 81

Comments in C are enclosed by slash/star pairs: /* .. comments .. */ which may
cross multiple lines. C++ introduced a form of comment started by two slashes and

extending to the end of the line: // comment until the line end

The // comment form is so handy that many C compilers now also support it,
although it is not technically part of the C language.

Along with well-chosen function names, comments are an important part of well
written code. Comments should not just repeat what the code says. Comments
should describe what the code accomplishes which is much more interesting than a
translation of what each statement does. Comments should also narrate what is

tricky or non-obvious about a section of code.
Variables

As in most languages, a variable declaration reserves and names an area in memory
at run time to hold a value of particular type. Syntactically, C puts the type first
followed by the name of the variable. The following declares an int variable named

"num" and the 2nd line stores the value 42 into num.
int num;

num = 42;

num 42

A variable corresponds to an area of memory which can store a value of the given

type.

Making a drawing is an excellent way to think about the variables in a program. Draw
each variable as box with the current value inside the box. This may seem like a
"beginner" technique, but when I'm buried in some horribly complex programming

problem, invariably resort to making a drawing to help think the problem through.

Variables, such as num, do not have their memory cleared or set in any way when
they are allocated at run time. Variables start with random values, and it is up to the
program to set them to something sensible before depending on their values.

Names in C are case sensitive so "x" and "X" refer to different variables. Names can

contain digits and underscores (_), but may not begin with a digit. Multiple variables

DTE&T, Odisha Page 82

can be declared after the type by separating them with commas. C is a classical
"compiletime" language -- the names of the variables, their types, and their
implementations are all flushed out by the compiler at compile time (as opposed to

figuring such details out at run time like an interpreter).

float x, y, z, X;

Assignment Operator =

The assignment operator is the single equals sign (=).

i =6;

i=i+1;

The assignment operator copies the value from its right hand side to the variable on
its left hand side. The assignment also acts as an expression which returns the

newly assigned value. Some programmers will use that feature to write things like

the following.
y = (x =2 *x); // double x, and also put x's new value in y
Truncation

The opposite of promotion, truncation moves a value from a type to a smaller type. In
that case, the compiler just drops the extra bits. It may or may not generate a
compile time warning of the loss of information. Assigning from an integer to a
smaller integer (e.g.. long to int, or int to char) drops the most significant bits.
Assigning from a floating point type to an integer drops the fractional part of the

number.

char ch;

inti;

i =321;

ch =i; // truncation of an int value to fit in a char

/I ch is now 65

DTE&T, Odisha Page 83

The assignment will drop the upper bits of the int 321. The lower 8 bits of the number
321 represents the number 65 (321 - 256). So the value of ch will be (char)65 which
happens to be 'A'.

The assignment of a floating point type to an integer type will drop the fractional part
of the number. The following code will set i to the value 3. This happens when
assigning a floating point number to an integer or passing a floating point number to

a function which takes an integer.

double pi;

int i;

pi = 3.14159;

i = pi; // truncation of a double to fit in an int
/l'iis now 3

Pitfall -- int vs. float Arithmetic

Here's an example of the sort of code where int vs. float arithmetic can cause
problems. Suppose the following code is supposed to scale a homework score in the

range 0..20 to be in the range 0..100.

{

int score;

...Il suppose score gets set in the range 0..20 somehow
7

score = (score / 20) * 100; // NO -- score/20 truncates to 0

Unfortunately, score will almost always be set to 0 for this code because the integer
division in the expression (score/20) will be 0 for every value of score less than 20.

The fix is to force the quotient to be computed as a floating point number...
score = ((double)score / 20) * 100; // OK -- floating point division from cast

score = (score / 20.0) * 100; // OK -- floating point division from 20.0

DTE&T, Odisha Page 84

score = (int)(score / 20.0) * 100; // NO -- the (int) truncates the floating
/I quotient back to 0
No Boolean -- Use int

C does not have a distinct boolean type-- int is used instead. The language treats
integer

0 as false and all non-zero values as true. So the statement...
i=0;

while (i - 10) {

will execute until the variable i takes on the value 10 at which time the expression (i -

10) will become false (i.e. 0). (we'll see the while() statement a bit later)
Mathematical Operators

C includes the usual binary and unary arithmetic operators. See the appendix for the
table of precedence. Personally, | just use parenthesis liberally to avoid any bugs
due to a misunderstanding of precedence. The operators are sensitive to the type of

the operands.

So division (/) with two integer arguments will do integer division. If either argument
is a float, it does floating point division. So (6/4) evaluates to 1 while (6/4.0)

evaluates to 1.5 -- the 6 is promoted to 6.0 before the division.
+ Addition

- Subtraction

/ Division

* Multiplication

% Remainder (mod)

Unary Increment Operators: ++ --

DTE&T, Odisha Page 85

The unary ++ and -- operators increment or decrement the value in a variable. There

are "pre" and "post" variants for both operators which do slightly different things

(explained below)

var++ increment "post" variant
++var increment "pre" variant
8

var-- decrement "post" variant
--var decrement "pre" variant
inti=42;

i++; // increment on i

I'i is now 43

i--; // decrement on i

I'i is now 42

Pre and Post Variations

The Pre/Post variation has to do with nesting a variable with the increment or

decrement operator inside an expression -- should the entire expression represent

the value of the variable before or after the change? | never use the operators in this

way (see below), but an example looks like...

inti=42;

int j;

j = (i+++10);

/'l is now 43

/Il jis now 52 (NOT 53)
j = (++i+10)

I'i is now 44

I jis now 54

DTE&T, Odisha

Page 86

Relational Operators

These operate on integer or floating point values and return a 0 or 1 boolean value.
== Equal

I= Not Equal

> Greater Than

<Less Than

>= Greater or Equal

<= Less or Equal

To see if x equals three, write something like:
if (x==23) ...

Pitfall = ==

An absolutely classic pitfall is to write assignment (=) when you mean comparison
(:: .

This would not be such a problem, except the incorrect assignment version compiles
fine because the compiler assumes you mean to use the value returned by the
assignment. This is rarely what you want

if (x = 3) ...

This does not test if x is 3. This sets x to the value 3, and then returns the 3 to the if
for testing. 3 is not 0, so it counts as "true" every time. This is probably the single
most common error made by beginning C programmers. The problem is that the
compiler is no help -- it thinks both forms are fine, so the only defense is extreme
vigilance when coding. Or write "= [1[J=="in big letters on the back of your hand
before coding. This mistake is an absolute classic and it's a bear to debug. Watch
Out! And need | say:

"Professional Programmer's Language."

Logical Operators

DTE&T, Odisha Page 87

The value O is false, anything else is true. The operators evaluate left to right and
stop as soon as the truth or falsity of the expression can be deduced. (Such
operators are called "short circuiting") In ANSI C, these are furthermore guaranteed
to use 1 to represent true, and not just some random non-zero bit pattern. However,
there are many C programs out there which use values other than 1 for true (non-
zero pointers for example), so when programming, do not assume that a true
boolean is necessarily 1 exactly.

I Boolean not (unary)
&& Boolean and

|| Boolean or

Bitwise Operators

C includes operators to manipulate memory at the bit level. This is useful for writing
low level hardware or operating system code where the ordinary abstractions of
numbers, characters, pointers, etc... are insufficient -- an increasingly rare need. Bit
manipulation code tends to be less "portable". Code is "portable" if with no
programmer intervention it compiles and runs correctly on different types of
computers. The bitwise operations are typically used with unsigned types. In
particular, the shift operations are guaranteed to shift 0 bits into the newly vacated

positions when used on unsigned values.

~ Bitwise Negation (unary) — flip 0 to 1 and 1 to 0 throughout
& Bitwise And

| Bitwise Or

A Bitwise Exclusive Or

>> Right Shift by right hand side (RHS) (divide by power of 2)
<< Left Shift by RHS (multiply by power of 2)

Do not confuse the Bitwise operators with the logical operators. The bitwise
connectives are one character wide (&, |) while the boolean connectives are two
characters wide (&&, ||). The bitwise operators have higher precedence than the

boolean operators. The compiler will never help you out with a type error if you use &

DTE&T, Odisha Page 88

when you meant &&. As far as the type checker is concerned, they are identical--

they both take and produce integers since there is no distinct boolean type.
Other Assignment Operators

In addition to the plain = operator, C includes many shorthand operators which
represents variations on the basic =. For example "+=" adds the right hand side to
the left hand side.

X = x + 10; can be reduced to x += 10;. This is most useful if x is a long expression
such as the following, and in some cases it may run a little faster. person-

>relatives.mom.numChildren += 2; // increase children by 2
Here's the list of assignment shorthand operators...

+=, -= Increment or decrement by RHS

*=, /= Multiply or divide by RHS

%= Mod by RHS

>>= Bitwise right shift by RHS (divide by power of 2)

<<= Bitwise left shift RHS (multiply by power of 2)

&=, |=, *= Bitwise and, or, xor by RHS

Control Structures

C uses curly braces ({}) to group multiple statements together. The statements
execute in order. Some languages let you declare variables on any line (C++). Other
languages insist that variables are declared only at the beginning of functions
(Pascal). C takes the middle road -- variables may be declared within the body of a
function, but they must follow a '{". More modern languages like Java and C++ allow

you to declare variables on any line, which is handy.
If Statement

Both an if and an if-else are available in C. The <expression> can be any valid
expression. The parentheses around the expression are required, even if it is just a
single variable.

DTE&T, Odisha Page 89

if (<expression>) <statement> // simple form with no {}'s or else clause if

(<expression>) { // simple form with {}'s to group statements
<statement>

<statement>

}

if (<expression>) { // full then/else form
<statement>

}

else {

<statement>

}

Conditional Expression -or- The Ternary Operator

The conditional expression can be used as a shorthand for some if-else statements.

The general syntax of the conditional operator is:
<expression1> ? <expression2> : <expression3>

This is an expression, not a statement, so it represents a value. The operator works
by evaluating expression1. If it is true (non-zero), it evaluates and returns

expression2 .
Otherwise, it evaluates and returns expression3.

The classic example of the ternary operator is to return the smaller of two variables.

Every once in a while, the following form is just what you needed. Instead of...
if (x<y){

min = X;

}

else {

min =;

DTE&T, Odisha Page 90

}
12

You just say...
min = (x<y)?x:y;
Switch Statement

The switch statement is a sort of specialized form of if used to efficiently separate
different blocks of code based on the value of an integer. The switch expression is
evaluated, and then the flow of control jumps to the matching const-expression case.
The case expressions are typically int or char constants. The switch statement is
probably the single most syntactically awkward and error-prone features of the C
language.

switch (<expression>) {
case <const-expression-1>:
<statement>

break;

case <const-expression-2>:
<statement>

break;

case <const-expression-3>: // here we combine case 3 and 4
case <const-expression-4>:
<statement>

break;

default: // optional

<statement>

}

DTE&T, Odisha Page 91

Each constant needs its own case keyword and a trailing colon (:). Once execution
has jumped to particular case, the program will keep running through all the cases
from that point down -- this so called "fall through" operation is used in the above
example so that expression-3 and expression-4 run the same statements. The
explicit break statements are necessary to exit the switch. Omitting the break
statements is a common error — it compiles, but leads to inadvertent fall-through

behavior.

Why does the switch statement fall-through behavior work the way it does? The best
explanation | can think of is that originally C was developed for an audience of
assembly language programmers. The assembly language programmers were used
to the idea of a jump table with fall-through behavior, so that's the way C does it (it's
also relatively easy to implement it this way.) Unfortunately, the audience for C is
now quite different, and the fall-through behavior is widely regarded as a terrible part

of the language.
While Loop

The while loop evaluates the test expression before every loop, so it can execute

zero times if the condition is initially false. It requires the parenthesis like the if.
while (<expression>) {

<statement>

}

Do-While Loop

Like a while, but with the test condition at the bottom of the loop. The loop body will
always execute at least once. The do-while is an unpopular area of the language,

most everyone tries to use the straight while if at all possible.
do {

<statement>

} while (<expression>)

For Loop

DTE&T, Odisha Page 92

The for loop in C is the most general looping construct. The loop header contains

three parts: an initialization, a continuation condition, and an action.
for (<initialization>; <continuation>; <action>) {
<statement>

}

The initialization is executed once before the body of the loop is entered. The loop
continues to run as long as the continuation condition remains true (like a while).
After every execution of the loop, the action is executed. The following example

executes 10 times by counting 0..9. Many loops look very much like the following...
for (i=0;i<10; i++){
<statement>

}

C programs often have series of the form 0..(some_number-1). It's idiomatic in C for
the above type loop to start at 0 and use < in the test so the series runs up to but not
equal to the upper bound. In other languages you might start at 1 and use <= in the
test. Each of the three parts of the for loop can be made up of multiple expressions
separated by commas. Expressions separated by commas are executed in order, left
to right, and represent the value of the last expression. (See the string-reverse
example below for a demonstration of a complex for loop.)

Break

The break statement will move control outside a loop or switch statement.
Stylistically speaking, break has the potential to be a bit vulgar. It's preferable to use
a straight while with a single test at the top if possible. Sometimes you are forced to
use a break because the test can occur only somewhere in the midst of the
statements in the loop body. To keep the code readable, be sure to make the break
obvious -- forgetting to account for the action of a break is a traditional source of
bugs in loop behavior.

while (<expression>) {
<statement>

DTE&T, Odisha Page 93

<statement>

if (<condition which can only be evaluated here>)
break;

<statement>

<statement>

}

// control jumps down here on the break

The break does not work with if. It only works in loops and switches. Thinking that a
break refers to an if when it really refers to the enclosing while has created some
high quality bugs. When using a break, it's nice to write the enclosing loop to iterate
in the most straightforward, obvious, normal way, and then use the break to explicitly

catch the exceptional, weird cases.
Continue

The continue statement causes control to jump to the bottom of the loop, effectively
skipping over any code below the continue. As with break, this has a reputation as
being vulgar, so use it sparingly. You can almost always get the effect more clearly

using an if inside your loop.

while (<expression>) {

if (<condition>)

continue;

I/ control jumps here on the continue

}

DTE&T, Odisha Page 94

CHAPTER -7

Complex Data Types

C has the usual facilities for grouping things together to form composite types—
arrays and records (which are called "structures"). The following definition declares a
type called "struct fraction" that has two integer sub fields named "numerator" and
"denominator". If you forget the semicolon it tends to produce a syntax error in

whatever thing follows the struct declaration.

struct fraction {

int numerator;

int denominator;

}; // Don't forget the semicolon!

This declaration introduces the type struct fraction (both words are required) as a
new type. C uses the period (.) to access the fields in a record. You can copy two
records of the same type using a single assignment statement, however == does not

work on structs.

struct fraction f1, f2; // declare two fractions
f1.numerator = 22;
f1.denominator = 7;

f2 = f1; // this copies over the whole struct

Arrays

The simplest type of array in C is one which is declared and used in one place.
There are more complex uses of arrays which | will address later along with pointers.
The following declares an array called scores to hold 100 integers and sets the first

DTE&T, Odisha Page 95

and last elements. C arrays are always indexed from 0. So the first int in scores

array is scores[0] and the last is scores[99].
int scores[100];
scores[0] = 13; // set first element

scores[99] = 42; // set last element

0
scores

Index 1 2 99

Someone else’s memory off either end of the array — do not read or write this
memory. There is space for each int element in the scores array — this element is

referred to as scores[0].

-5673 22541 42

These elements have random values because the code has not yet initialized them
to anything. The name of the array refers to the whole array. (implementation) it

works by representing a pointer to the start of the array.

It's a very common error to try to refer to non-existent scores[100] element. C does
not do any run time or compile time bounds checking in arrays. At run time the code
will just access or mangle whatever memory it happens to hit and crash or
misbehave in some unpredictable way thereafter. "Professional programmer's
language." The convention of numbering things 0..(number of things - 1) pervades
the language. To best integrate with C and other C programmers, you should use

that sort of numbering in your own data structures as well.

DTE&T, Odisha Page 96

Multidimensional Arrays

The following declares a two-dimensional 10 by 10 array of integers and sets the first

and last elements to be 13.
int board [10][10];
board[0][0] = 13;
board[9][9] = 13;

The implementation of the array stores all the elements in a single contiguous block
of memory. The other possible implementation would be a combination of several
distinct one dimensional arrays -- that's not how C does it. In memory, the array is
arranged with the elements of the rightmost index next to each other. In other words,
board[1][8] comes right before board[1][9] in memory. (highly optional efficiency
point) It's typically efficient to access memory which is near other recently accessed
memory. This means that the most efficient way to read through a chunk of the array
is to vary the rightmost index the most frequently since that will access elements that

are near each other in memory.

Array of Structs

The following declares an array named "numbers" which holds 1000 struct fraction's.
struct fraction numbers[1000];

numbers[0].numerator = 22; /* set the Oth struct fraction */

numbers[0].denominator = 7;

Here's a general trick for unraveling C variable declarations: look at the right hand
side and imagine that it is an expression. The type of that expression is the left hand
side. For the above declarations, an expression which looks like the right hand side
(numbers[1000], or really anything of the form numbers]...]) will be the type on the
left hand side (struct fraction).

Pointers

DTE&T, Odisha Page 97

A pointer is a value which represents a reference to another value sometimes known
as the pointer's "pointee". Hopefully you have learned about pointers somewhere
else, since the preceding sentence is probably inadequate explanation. This
discussion will concentrate on the syntax of pointers in C -- for a much more
complete discussion of pointers and their use see http://cslibrary.stanford.edu/102/,
Pointers and Memory.

Syntax

Syntactically C uses the asterisk or "star" (*) to indicate a pointer. C defines pointer
types based on the type pointee. A char* is type of pointer which refers to a single
char.

A struct fraction* is type of pointer which refers to a struct fraction.
int* intPtr; // declare an integer pointer variable intPtr

char* charPtr; // declares a character pointer --

/I a very common type of pointer

// Declare two struct fraction pointers

/I (when declaring multiple variables on one line, the *

// should go on the right with the variable)

struct fraction *f1, *f2;

The Floating "*"

In the syntax, the star is allowed to be anywhere between the base type and the
variable name. Programmer's have their own conventions-- | generally stick the * on
the left with the type. So the above declaration of intPtr could be written

equivalently...

int *intPtr; // these are all the same
int * intPtr;

int* intPtr;

Pointer Dereferencing

DTE&T, Odisha Page 98

We'll see shortly how a pointer is set to point to something -- for now just assume the
pointer points to memory of the appropriate type. In an expression, the unary * to the

left of a pointer dereferences it to retrieve the value it points to.

There's an alternate, more readable syntax available for dereferencing a pointer to a
struct. A "->" at the right of the pointer can access any of the fields in the struct. So

the reference to the numerator field could be written f1->numerator.

Here are some more complex declarations...

struct fraction** fp; // a pointer to a pointer to a struct fraction
struct fraction fract_array[20]; // an array of 20 struct fractions
struct fraction* fract_ptr_array[20]; // an array of 20 pointers to
/1 struct fractions

One nice thing about the C type syntax is that it avoids the circular definition
problems which come up when a pointer structure needs to refer to itself. The
following definition defines a node in a linked list. Note that no preparatory

declaration of the node pointer type is necessary.
struct node {

int data;

struct node* next;

2

The & Operator

The & operator is one of the ways that pointers are set to point to things. The &
operator computes a pointer to the argument to its right. The argument can be any
variable which takes up space in the stack or heap (known as an "LValue"
technically). So &i and &(f1->numerator) are ok, but &6 is not. Use & when you have

some memory, and you want a pointer to that memory.

DTE&T, Odisha Page 99

void foo() {

int* p; // p is a pointer to an integer

inti; // iis an integer

p = &i; // Set p to point to i

*p = 13; // Change what p points to -- in this case i -- to 13

I At this pointiis 13. So is *p. In fact *p is i.

}

p

i13

When using a pointer to an object created with &, it is important to only use the
pointer so long as the object exists. A local variable exists only as long as the
function where it is declared is still executing (we'll see functions shortly). In the
above example, i exists only as long as foo() is executing. Therefore any pointers
which were initialized with & are valid only as long as foo() is executing. This

"lifetime" constraint of local memory is standard in many languages, and is

something you need to take into account when using the & operator.
NULL

A pointer can be assigned the value 0 to explicitly represent that it does not currently
have a pointee. Having a standard representation for "no current pointee" turns out
to be very handy when using pointers. The constant NULL is defined to be 0 and is
typically used when setting a pointer to NULL. Since it is just 0, a NULL pointer will
behave like a boolean false when used in a boolean context. Dereferencing a NULL
pointer is an error which, if you are lucky, the computer will detect at runtime --

whether the computer detects this depends on the operating system.
Pitfall -- Uninitialized Pointers

When using pointers, there are two entities to keep track of. The pointer and the
memory it is pointing to, sometimes called the "pointee". There are three things

which must be done for a pointer/pointee relationship to work...

DTE&T, Odisha Page 100

(1) The pointer must be declared and allocated
(2) The pointee must be declared and allocated
(3) The pointer (1) must be initialized so that it points to the pointee (2)

The most common pointer related error of all time is the following: Declare and
allocate the pointer (step 1). Forget step 2 and/or 3. Start using the pointer as if it
has been setup to point to something. Code with this error frequently compiles fine,
but the runtime results are disastrous. Unfortunately the pointer does not point
anywhere good unless (2) and (3) are done, so the run time dereference operations
on the pointer with * will misuse and trample memory leading to a random crash at

some point.

{

int* p;

*p =13;// NO NO NO p does not point to an int yet
// this just overwrites a random area in memory

}

-14346

p

i

Of course your code won't be so trivial, but the bug has the same basic form: declare

a pointer, but forget to set it up to point to a particular pointee.

Using Pointers

Declaring a pointer allocates space for the pointer itself, but it does not allocate
space for the pointee. The pointer must be set to point to something before you can

dereference it.

DTE&T, Odisha Page 101

Here's some code which doesn't do anything useful, but which does demonstrate (1)
(2)

(3) for pointer use correctly...

int* p; /I (1) allocate the pointer

inti; I (2) allocate pointee

struct fraction f1; // (2) allocate pointee

p = &i; I (3) setup p to point to i

*p=42; /I ok to use p since it's setup

p = &(f1.numerator); /1 (3) setup p to point to a different int
*p = 22;

p = &f1.denominator); // (3)
*p = 7;

So far we have just used the & operator to create pointers to simple variables such

as i. Later, we'll see other ways of getting pointers with arrays and other techniques.

C Strings

C has minimal support of character strings. For the most part, strings operate as
ordinary arrays of characters. Their maintenance is up to the programmer using the
standard facilities available for arrays and pointers. C does include a standard library
of functions which perform common string operations, but the programmer is
responsible for the managing the string memory and calling the right functions.
Unfortunately computations involving strings are very common, so becoming a good
C programmer often requires becoming adept at writing code which manages strings

which means managing pointers and arrays.

A C string is just an array of char with the one additional convention that a "null"

character (\Q') is stored after the last real character in the array to mark the end of

DTE&T, Odisha Page 102

the string. The compiler represents string constants in the source code such as
"binky" as arrays which follow this convention. The string library functions (see the
appendix for a partial list) operate on strings stored in this way. The most useful
library function is strcpy(char dest[], const char source[]); which copies the bytes of
one string over to another. The order of the arguments to strcpy() mimics the
arguments in of '=' -- the right is assigned to the left. Another useful string function is
strlen(const char string[]); which returns the number of characters in C string not
counting the trailing \0'.

Note that the regular assignment operator (=) does not do string copying which is
why strcpy() is necessary. See Section 6, Advanced Pointers and Arrays, for more

detail on how arrays and pointers work.

The following code allocates a 10 char array and uses strcpy() to copy the bytes of
the string constant "binky" into that local array.

{

char localString[10];

strepy(localString, "binky");

}

binkyOxxxx
012..

localString

The memory drawing shows the local variable localString with the string "binky"
copied into it. The letters take up the first 5 characters and the "\O' char marks the
end of the string after the 'y'. The X's represent characters which have not been set
to any particular value. If the code instead tried to store the string "l enjoy languages
whichh have good string support” into localString, the code would just crash at run
time since the 10 character array can contain at most a 9 character string. The large

DTE&T, Odisha Page 103

string will be written passed the right hand side of localString, overwriting whatever

was stored there.

String Code Example

Here's a moderately complex for loop which reverses a string stored in a local array.
It demonstrates calling the standard library functions strcpy() and strlen() and
demonstrates that a string really is just an array of characters with a '\O' to mark the
effective end of the string. Test your C knowledge of arrays and for loops by making
a drawing of the memory for this code and tracing through its execution to see how it

works.

{

char string[1000]; // string is a local 1000 char array
int len;

strepy(string, "binky");

len = strlen(string);

[

Reverse the chars in the string:

i starts at the beginning and goes up

j starts at the end and goes down

i/j exchange their chars as they go until they meet

*/
inti, j;
char temp;

for (i=0,j=len-1;i<j;i++, j-){

temp = string[i;

DTE&T, Odisha Page 104

string[i] = string[j];
string[j] = temp;

}

// at this point the local string should be "yknib"

}

"Large Enough" Strings

The convention with C strings is that the owner of the string is responsible for
allocating array space which is "large enough" to store whatever the string will need
to store. Most routines do not check that size of the string memory they operate on,
they just assume its big enough and blast away. Many, many programs contain
declarations like the following...

{
char localString[1000];

}

The program works fine so long as the strings stored are 999 characters or shorter.
Someday when the program needs to store a string which is 1000 characters or
longer, then it crashes. Such array-not-quite-big-enough problems are a common
source of bugs, and are also the source of so called "buffer overflow" security
problems. This scheme has the additional disadvantage that most of the time when
the array is storing short strings, 95% of the memory reserved is actually being
wasted. A better solution allocates the string dynamically in the heap, so it has just
the right size. To avoid buffer overflow attacks, production code should check the
size of the data first, to make sure it fits in the destination string. See the stricpy()
function in Appendix A.

DTE&T, Odisha Page 105

char*

Because of the way C handles the types of arrays, the type of the variable
localString above is essentially char*. C programs very often manipulate strings
using variables of type char* which point to arrays of characters. Manipulating the
actual chars in a string requires code which manipulates the underlying array, or the
use of library functions such as strcpy() which manipulate the array for you. See

Section 6 for more detail on pointers and arrays.

TypeDef

A typedef statement introduces a shorthand name for a type. The syntax is...
typedef <type><name>;

The following defines Fraction type to be the type (struct fraction). C is case
sensitive, so fraction is different from Fraction. It's convenient to use typedef to
create types with upper case names and use the lower-case version of the same

word as a variable.

typedef struct fraction Fraction;
Fraction fraction; // Declare the variable "fraction" of type "Fraction"

// which is really just a synonym for "struct fraction".

The following typedef defines the name Tree as a standard pointer to a binary tree
node where each node contains some data and "smaller" and "larger" subtree

pointers.

typedef struct treenode* Tree;
struct treenode {
int data;

Tree smaller, larger; // equivalently, this line could say

DTE&T, Odisha Page 106

}; /1 "struct treenode *smaller, *larger"

Functions

All languages have a construct to separate and package blocks of code. C uses the
"function" to package blocks of code. This article concentrates on the syntax and
peculiarities of C functions. The motivation and design for dividing a computation into

separate blocks is an entire discipline in its own.

A function has a name, a list of arguments which it takes when called, and the block
of code it executes when called. C functions are defined in a text file and the names
of all the functions in a C program are lumped together in a single, flat namespace.
The special function called "main" is where program execution begins. Some
programmers like to begin their function names with Upper case, using lower case
for variables and parameters, Here is a simple C function declaration. This declares
a function named Twice which takes a single int argument named num. The body of
the function computes the value which is twice the num argument and returns that

value to the caller.

[
Computes double of a number.

Works by tripling the number, and then subtracting to get back to double.
*/

static int Twice(int num) {

int result = num * 3;

result = result - num;

return(result);

}

DTE&T, Odisha Page 107

Syntax

The keyword "static" defines that the function will only be available to callers in the
file where it is declared. If a function needs to be called from another file, the function
cannot be static and will require a prototype -- see prototypes below. The static form
is convenient for utility functions which will only be used in the file where they are
declared. Next , the "int" in the function above is the type of its return value. Next
comes name of the function and its list of parameters. When referring to a function
by name in documentation or other prose, it's a convention to keep the parenthesis ()
suffix, so in this case | refer to the function as "Twice()". The parameters are listed
with their types and names, just like variables. Inside the function, the parameter
num and the local variable result are "local" to the function -- they get their own
memory and exist only so long as the function is executing. This independence of

"local" memory is a standard feature of most languages.

The "caller" code which calls Twice() looks like...

int num = 13;
inta=1;
intb =2;

a = Twice(a); // call Twice() passing the value of a

b = Twice(b + num); // call Twice() passing the value b+num
Ila==

/I'b==30

// num == 13 (this num is totally independent of the "num" local to Twice()

Call by Value vs. Call by Reference

C passes parameters "by value" which means that the actual parameter values are

copied into local storage. The caller and callee functions do not share any memory --

DTE&T, Odisha Page 108

they each have their own copy. This scheme is fine for many purposes, but it has

twodisadvantages.

1) Because the callee has its own copy, modifications to that memory are not
communicated back to the caller. Therefore, value parameters do not allow the
callee to communicate back to the caller. The function's return value can
communicate some information back to the caller, but not all problems can be solved

with the single return value.

2) Sometimes it is undesirable to copy the value from the caller to the callee because
the value is large and so copying it is expensive, or because at a conceptual level

copying the value is undesirable.

The alternative is to pass the arguments "by reference". Instead of passing a copy of
a value from the caller to the callee, pass a pointer to the value. In this way there is
only one copy of the value at any time, and the caller and callee both access that

one value through pointers.

Some languages support reference parameters automatically. C does not do this —
the programmer must implement reference parameters manually using the existing

pointer constructs in the language.

Swap Example

The classic example of wanting to modify the caller's memory is a swap() function
which exchanges two values. Because C uses call by value, the following version of

Swap will not work...

void Swap(int x, int y) { // NO does not work
int temp;

temp = x;

x =y; I/ these operations just change the local x,y,temp

DTE&T, Odisha Page 109

y = temp; // -- nothing connects them back to the caller's a,b

}

// Some caller code which calls Swap()...

inta=1;
intb =2;
Swap(a, b);

Swap() does not affect the arguments a and b in the caller. The function above only
operates on the copies of a and b local to Swap() itself. This is a good example of
how "local" memory such as (x, y, temp) behaves -- it exists independent of
everything else only while its owning function is running. When the owning function

exits, its local memory disappears.

Reference Parameter Technique

To pass an object X as a reference parameter, the programmer must pass a pointer
to X instead of X itself. The formal parameter will be a pointer to the value of
interest. The caller will need to use & or other operators to compute the correct
pointer actual parameter. The callee will need to dereference the pointer with *
where appropriate to access the value of interest. Here is an example of a correct

Swap() function.
static void Swap(int* x, int* y) { // params are int* instead of int
int temp;

temp = *x; // use * to follow the pointer back to the caller's memory

*X = *y,
*y = temp;
}

// Some caller code which calls Swap()...

DTE&T, Odisha Page 110

inta=1;
intb =2;

Swap(&a, &b);

Things to notice...
* The formal parameters are int* instead of int.
* The caller uses & to compute pointers to its local memory (a,b).

* The callee uses * to dereference the formal parameter pointers back to get the

caller's memory.

Since the operator & produces the address of a variable -- &a is a pointer to a. In
Swap() itself, the formal parameters are declared to be pointers, and the values of
interest (a,b) are accessed through them. There is no special relationship between
the names used for the actual and formal parameters. The function call matches up
the actual and formal parameters by their order -- the first actual parameter is
assigned to the first formal parameter, and so on. | deliberately used different names

(a,b vs x,y) to emphasize that the names do not matter.
const

The qualifier const can be added to the left of a variable or parameter type to declare
that the code using the variable will not change the variable. As a practical matter,
use of const is very sporadic in the C programming community. It does have one
very handy use, which is to clarify the role of a parameter in a function prototype...

void foo(const struct fraction* fract);

In the foo() prototype, the const declares that foo() does not intend to change the
struct fraction pointee which is passed to it. Since the fraction is passed by pointer,
we could not know otherwise if foo() intended to change our memory or not. Using
the const, foo() makes its intentions clear. Declaring this extra bit of information

helps to clarify the role of the function to its implementor and caller.

DTE&T, Odisha Page 111

